\qquad

MATRICES

A Matrix is simplified version of working with equations with multiple variables.
If a car company is building cars and trucks they can use matrices to determine the number of parts they will need over a given span of time, producing a particular number of vehicles. If each car needs 4 wheels, 2 bench seats, and 1 gas tank. Each truck needs 6 wheels, 1 bench seat and 3 gas tanks. Then we can set-up a matrix where each row and column are for a given part of the equation.

Using matrices we can solve for all kinds of situations. Matrices have their own specific rules for adding, subtracting, multiplying, and dividing.

The size (dimension) of a Matrix is \# Rows by \# Columns. (Rows go across, columns up and down)

$$
\begin{aligned}
\text { EXAMPLE: } \quad B= & {\left[\begin{array}{cc}
3 & 2 \\
1 & 0 \\
-1 & -2
\end{array}\right] \leftarrow \text { row } \quad \text { Matrix B is a } 3 \times 2 \text { matrix. } } \\
& \uparrow \text { Column }
\end{aligned}
$$

An element of a Matrix is the value in a particular position.
EXAMPLE: $\quad B=\left[\begin{array}{cc}3 & 2 \\ 1 & 0 \\ -4 & -5\end{array}\right] b_{\text {row,column }} \quad b_{1,2}=2$
2 is the element in the $1^{\text {st }}$ row and $2^{\text {nd }}$ column
Use the matrices below to answer all questions.

$$
\left.\begin{array}{ll}
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 3 & 5 \\
2 & -3 & 0
\end{array}\right] \quad B=\left[\begin{array}{cc}
3 & 2 \\
1 & 0 \\
-1 & -2
\end{array}\right] & C=\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
0 & -4 & 3
\end{array}\right] \quad D=\left[\begin{array}{cc}
-2 & -2 \\
7 & 9 \\
3 & 6
\end{array}\right] \\
E=\left[\begin{array}{lll}
2 & -8 & 13
\end{array}\right]
\end{array}\right] \quad F=\left[\begin{array}{l}
4 \\
7
\end{array}\right] \quad G=\left[\begin{array}{ccc}
0 & 2 & -4 \\
3 & 5 & -5 \\
1 & 1 & 6
\end{array}\right] \quad H=\left[\begin{array}{cccc}
-4 & 2 & 1 & 0 \\
-2 & -1 & 4 & 1
\end{array}\right]
$$

List the dimensions for the specified matrix

1. E \qquad 4. H \qquad
2. F \qquad
3. A \qquad
4. D
5. B \qquad

Identify the element in the specified locations, If possible.
5. Matrix $D, d_{2,1}$
5. \qquad
6. Matrix A, a ${ }_{2,3}$
6. \qquad
7. Matrix H, h ${ }_{4,1}$ \qquad
8. Matrix E, $e_{1,3}$
8. \qquad
If the Matrices are set equal to each other, each element must be the same.
$\underline{\text { Solve for all variables }}$
9. $\left[\begin{array}{cc}4 & x \\ y+3 & -8\end{array}\right]=\left[\begin{array}{cc}4 & 0 \\ 12 & z-8\end{array}\right]$
10. $\left[\begin{array}{cc}2 a+1 & 16 \\ 7-b & 1\end{array}\right]=\left[\begin{array}{cc}17 & 16 \\ -15 & c+4\end{array}\right]$

ADDING, SUBTRACTING, AND SCALAR MULTIPLICATION

When Adding and Subtracting Matrices, the matrices must be the same exact size!
Adding- make sure you add ALL elements in the $2^{\text {nd }}$ matrix.
Subtracting - make sure you subtract $\underline{\text { ALL }}$ elements in the $2^{\text {nd }}$ matrix.
Scalar Multiplication - make sure you distribute the multiplier to ALL elements in the matrix.
EXAMPLES: $\quad A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 2 & 3 & 5 \\ 2 & -3 & 0\end{array}\right] \quad C=\left[\begin{array}{ccc}-3 & 0 & 2 \\ 1 & -1 & 0 \\ 0 & -4 & 3\end{array}\right]$ Use the following matrices for these examples:
Work:

1. A $+\mathrm{C}=\left[\begin{array}{ccc}1+-3 & 0+0 & -2+2 \\ 2+1 & 3+-1 & 5+0 \\ 2+0 & -3+-4 & 0+3\end{array}\right]$ 2. A-C $=\left[\begin{array}{ccc}1-(-3) & 0-0 & -2-2 \\ 2-1 & 3-(-1) & 5-0 \\ 2-0 & -3-(-4) & 0-3\end{array}\right] 3.4 A=\left[\begin{array}{ccc}4(1) & 4(0) & 4(-2) \\ 4(2) & 4(3) & 4(5) \\ 4(2) & 4(-3) & 4(0)\end{array}\right]$

Answer:

1. $A+C=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 3 & 2 & 5 \\ 2 & -7 & 3\end{array}\right]$
2. $\mathrm{A}-\mathrm{C}=\left[\begin{array}{ccc}4 & 0 & -4 \\ 1 & 4 & 5 \\ 2 & 1 & -3\end{array}\right]$
3. $4 \mathrm{~A}=\left[\begin{array}{ccc}4 & 0 & -8 \\ 8 & 12 & 20 \\ 8 & -12 & 0\end{array}\right]$

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 3 & 5 \\
2 & -3 & 0
\end{array}\right] C=\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
0 & -4 & 3
\end{array}\right] \quad D=\left[\begin{array}{cc}
-2 & -2 \\
7 & 9 \\
3 & 6
\end{array}\right] B=\left[\begin{array}{cc}
3 & 2 \\
1 & 0 \\
-1 & -2
\end{array}\right] G=\left[\begin{array}{ccc}
0 & 2 & -4 \\
3 & 5 & -5 \\
1 & 1 & 6
\end{array}\right]
$$

11. $\mathrm{D}+\mathrm{B}$
12.
13. $\mathrm{G}-\mathrm{C}$
14. \qquad
15. 3 B
16.
17. $\mathrm{G}+\mathrm{A}-\mathrm{C}$
18.
19. $4 D+-3 B$
20.
