\qquad
\qquad Period: \qquad

- PARALLEL LINES have SAME slopes.

Given: Linear equation of $y=-3 x-2$.
Slope of $y=-3 x-2$ is \qquad therefore parallel slope is \qquad .

- PERPENDICULAR LINES have OPPOSITE RECIPROCAL (FLIP-FLOP) slopes.

Given: Linear equation of $y=-\frac{1}{4} x+3$
Slope of $y=-\frac{1}{4} x+3$ is \qquad therefore perpendicular slope is \qquad .

State the parallel and perpendicular slope for each given set of points.
1.) $(-3,5)$ and $(-6,7)$
2.) $(-8,4)$ and $(-6,-4)$

Parallel Slope: \qquad Parallel Slope: \qquad

Perpendicular Slope: \qquad Perpendicular Slope: \qquad
3.) Write an equation of a line in slope-intercept form that is parallel to the line of $y=\frac{1}{2} x+6$ and whose \mathbf{y}-intercept is $\mathbf{- 2}$.
4.) Write an equation of a line in slope-intercept form that is parallel to the line of $y=-4 x-9$ and passes through the point $(-2,-4)$.
5.) Write an equation of a line in slope-intercept form that is parallel to the line $4 x-6 y=12$ and passes through the point $(6,-3)$.
6.) Write an equation of a line in slope-intercept form that is perpendicular to the line $y-3=-2(x+3)$ and passes through the point $(10,-2)$.
7.) Write an equation of a line in slope-intercept form that is perpendicular to the line $2 x-3 y+6=0$ and passes through the point $(-4,-6)$.
8.) Write an equation of a line in slope-intercept form that is perpendicular to the line that contains the points $(6,-2)$ and $(4,-8)$ and passes through the point $(-9,4)$.

Retro Questions

9.) Simplify.
$\left(2 x^{-2} y z^{-3}\right)^{-4}$
10.) Simplify.
$12-16\left(4^{-2} \cdot 2^{5}\right) \div(6-(-2))-8$

